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Abstract. We study the infinite-dimensional Hubbard model within the self-consistent 
second-order U-perturbation treatment (son). which is a conserving approximation and the 
simplest systematic improvement of the H m e  approximation (HA). For half filling we find 
antiferromagnetic solutions, but even for small Coulomb repulsion U the critical temperature 
is subsantially reduced compared to that obtained in the HA. We ConsVUct the phase diagram 
as a function of doping and find regions of re-entrant behaviour in the temperature dependence 
of the staggered magnetization away from half filling. The stability of the ordered solutions is 
investigated by calcul;\tion of the grand canonical potential and the filling fraction dependence of 
the chemical potential; for small values of U the antiferromagnetic phase mansition is continuous 
(as usual). but for larger U the son yields P first-order phase transition. For low temperatures and 
away from half filling there may be a region of phase coexistence between the antiferromagnetic 
and homogeneous phases. 

1. Introduction 

Since its introduction the Hubbard model (HM) [l] has acquired a position as the generic 
model for correlated electron systems. It incorporates essential features of these systems 
such as the itinerant character of the electrons and local (screened Coulomb) repulsion. 
Though the model is stripped down to the bare essentials of a correlated electron system, it 
has proven very hard to treat in a controlled manner in dimensions d > 1. The discovery 
of the limit of infinite dimensions as a well defined and non-trivial Iimiting case [21 has 
proven very fruitful in this respect [3, 41. This limit allows a mapping onto an atomic 
problem in the presence of two auxiliary, time-dependent (Kadanoff-Baym) fields [SI or, 
equivalently, onto the single-impurity Anderson model (SIAM) with a band-electron Green 
function to be determined self-consistently [6]. Unfortunately, in general the effective atomic 
or single-impurity problem cannot be solved exactly, but efficient numerical treatments are 
possible. The alternatives are time discretization of the auxiliary fields [7], or for the 
effective SIAM quantum Monte Carlo (QMC) calculations, finite-cluster diagonalizations or 
established approximations (second-order U-perturbation theory, SOPT, in the symmetric 
case or non-crossing approximation, NCA) IS, 9, 10, 11, 121. By means of these recent 
treatments ‘essentially exact’ results are available for the d = 00 HM, and antiferromagnetism 
of this model has been studied recently by means of the time-discretization treatment 171, 
the QMC and SOPT treatments of the SIAM [S. 111 and the NCA for the SIAM [13]. For 
strongly repulsive U these determinations of the antiferromagnetic (AF) phase at half-filled 
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band confirm the Heisenberg limit of the model which should give a critical temperature 
(the Niel temperature) T, - l /U .  At weak Coulomb repulsion it is consistent with the U -  
perturbation-theory results. which give exponentially small critical temperature for U -+ 0. 
and there is a maximum in T, = Tc(U) for intermediate coupling. Away from half filling 
the tendency to antiferromagnetic ordering is suppressed and exists between some finite 
lower and upper values of U at low enough temperature and for a certain (small) regime i n  
the filling fraction (near half filling). 

In spite of these 'essentially exact' results it is still necessary and justified to investigate 
the antiferromagnetism of the d = CO HM within systematic (and controlled) approximations. 
The methods mentioned above rely either on approximations of the SIAM (SOPT or NCA) or on 
QMC data, which are available along the (discretized) imaginary time axis so that additional 
procedures ('maximum entropy method') are necessary to obtain results for real frequency. 
Furthermore. these methods are still numerically very expensive and therefore the range of 
parameters (temperature, Coulomb repulsion) and the number of data available for various 
physical quantities are limited. Finally, as they rely on the mapping onto the single-impurity 
problem, these methods cannot be extended to real finite dimension d = 1 ,2 ,3 .  Therefore, 
other methods applicable for finite as well as for infinite d are still very valuable, and an 
application to the d = cc HM allows for a comparison with the exact results and thus for a 
judgement of the quality of this method. 

It is the purpose of this paper to study the AF phase diagram of the HM within a 
weak-coupling treatment in infinite dimensions. As shown by van Dongen [ 141 the free- 
energy gain due to symmetry breaking in the Hartree approximation is already of order 
U2, so fluctuations cannot be neglected, but have to be included on an equal footing, at 
least to second order, giving a reduction of the critical temperature and order parameter 
by a factor x 0.3. He used perturbation theory for the half-filled band at fixed staggered 
magnetization according to [15], We will employ selfconsistent second-order perturbation 
theory @OPT) for general filling fractions n. This is a conserving approximation in the 
sense of Kadanoff and Baym [16, 171, and hence it  will be thermodynamically equivalent 
to a self-consistent treatment at fixed staggered magnetization by a Legendre transform with 
respect to the staggered external field h .  We have applied the SOFT to the half-filled HM and 
find an antiferromagnetic solution even for very small Coulomb correlation U .  Calculating 
the temperature dependence of the order parameter (staggered magnetization) we obtain 
the standard (mean-field-like) behaviour characteristic for a second-order phase transition 
for small U, but an unusual behaviour (with two magnetic solutions) for larger values of 
U; a calculation of the grand canonical potential (GCP) shows that the latter behaviour 
characterizes a first-order transition, i.e. one of the two formal AF solutions obtained turns 
out to be thermodynamically unstable. A comparison with the results obtained for T, in sop7 
and i n  the Hartree approximation (HA) shows that the SOFT yields a substantial reduction in 
complete agreement with the result obtained already by van Dongen [14]. Away from half 
filling, where the AF phase diagram of the HM seems to be only moderately well explored, 
we have calculated T, as a function of the filling fraction n for different U .  Here we obtain a 
clear indication of re-entrant behaviour, i.e. for fixed filling n # 1 we obtain a homogeneous 
phase at low and high temperatures and an AF phase between some lower critical temperature 
Tcl and some upper critical temperature T,. This feature is also present in the HA, but the 
region of the phase diagram in which AF solutions are obtained is substantially reduced 
within the SOFT compared to the HA. Somewhat closer to n = 1 there is still re-entrant 
behaviour, but m only decreases to a finite value as T + 0. The AF solution turns out to 
be unstable towards phase separation upon decreasing temperature. 

In the following section we will establish our notation and explain our method. In section 
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3 we will present and discuss our results. We first consider the half-filled band which will 
serve also as a benchmark for the approach. Then we consider the phase diagram in the 
temperature-density plane. Section 4 closes the paper with some concluding remarks. We 
set h and ks equal to unity throughout this paper. 

2. Formalism and numerical method 

In our notation the Hubbard Hamiltonian reads 

where cr (c l )  annihilates (creates) an electron at site r of the d-dimensional hypercubic 
lattice, r/Jz;i is the hopping-matrix element and U is the Coulomb repulsion. The scaling 
of the hopping-matrix element assures a non-trivial limit when d + W. In this limit the 
self-energy becomes site diagonal [ 2 ] :  

- q r ,  = & J ' ~ , , I  ( 2 )  
but i t  may depend on the site r .  

Here we search for an antiferromagnetically ordered state in a hypercubic lattice. The 
self-energy will then depend on the sublattice (here arbitrarily named A and B), and we 
have the symmetry 

CA< = C&O. (3) 
The site-diagonal matrix elements of the Green function for one sublattice (say A) read 

Here w, = (2n + 1)rT denotes the Matsubara frequencies (T is temperature) and Go is the 
unperturbed on-site Green function 

which corresponds to a Gaussian DOS, and 

(6) 
U 

Z,, = iw. + - n- +omU - Cz(iw.).  2 
Here 

is the particle number per site, i.e. n / 2  is the filling fraction, and the average magnetic 
moment per site, m, on this sublattice is 

We approximate the self-energy by fully self-consistent second-order perturbation theory 
(SOFT). This is a @-derivable approximation [ 161 resulting from the approximate @'potential 
shown in figure 1 by functional differentiation C = 6@/6G. Apart from the Hartree term 
we then have a correlation contribution to the self-energy: 

E:(t) = -UZG,(5)G_,(5)G-,(-r). (9) 
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Figure 1. The @ potentia! in the SOFT approximation 

Here (as usual) T denotes the 'imaginary time' (0 c T < 6 = 1/T) and the standard 
relation between functions F ( T )  and their Fourier components F(io,) defined at the discrete 
Matsubara frequencies io., 

holds. This approach also allows for a consistent calculation of the grand canonical potential 
(GCP) R [16, 171 through 

,¶n = Q, - Tr Xi +Tr InG. (11) 
Here Tr means the sum over all Matsubara frequencies and the trace over all one-particle 
states; because of the site-diagonality of the self-energy the latter can be performed in 
site representation for Tr CG whereas it is more easily done in the k-space representation 
for Tr In G .  The temperature where the antiferromagnetic susceptibility diverges in the 
homogeneous phase is found by searching for the temperature which fulfils 

where 

The above equations (4)-(9) constitute a closed set of non-linear equations. For a given set 
of external parameters (i.e. temperature T, chemical potential w, U) there might be several 
solutions. Then the solution which minimizes the thermodynamic potential being consistent 
with the approximation is chosen. 

We use the Matsubara-frequency or imaginary-time representation in all the numerical 
calculations. The Green functions and self-energies for all positive Matsubara frequencies 
up to some cut-off are stored in tables. Self-energies are calculated from (9) by first 
transforming the Green functions to imaginary time, taking the product and transforming 
back to frequency. The high-frequency tails are approximated by their leading asymptotic 
behaviour by subtracting the asymptotic formula before the Fourier transform is performed 
(by FFT) and adding back the Fourier transform of the asymptotic part afterwards. Equations 
(4)-(9) are iterated until the maximum relative discrepancy between two successive iterations 
is less than about lo-'. 

The calculation of ps-2 is done in two parts. The first one, Q - Tr CG, is simply given 
by the diagrams in figure 1 but with different prefactors: 
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Here the first term on the right-hand side stems from the Hamee contribution to the self- 
energy. The second part Tr In G is calculated by splitting off an analytically tractable and 
asymptotically correct part before the frequency summation is performed. The important 
point is to choose the asymptotic part such that the frequency summation can be done exactly. 
Explicitly we use the Hartree form, but with parameters (m, n) from the selfconsistent 
calculation. 

Z!+ z:$ - € 2  

-2N1mdcpo(s )1n(1  + e 2 p f l ' + 2 e p p ' c o s h ( , 9 d m ) )  (15) 

where 

Z ; "= iw,+p '+omU p ' = p - - I n u  2 

and 
1 

PO(@) = ---ImGo(w+ io+). 
H 

The essential numerical aspect is that the frequency summations in equations (14) and (15) 
are absolutely convergent. 

3. Results and discussion 

We have solved numerically the equations ( 4 x 9 )  as described in the previous section. 
There is always a homogeneous solution, and at half filling we always find antiferromagnetic 
phases at low enough temperature. The staggered magnetization found for a half-filled band 
for U / t  = 1.0, 1.25, 1.5.2.0 is shown as a function of temperature in figure 2. The curves 
for U/? = 1.5, 2.0 are typical for U > U,, U, m 1.4r in that they show two solutions 
for the staggered magnetization in some temperature range. The other two curves are 
representative for all U < U, in giving a unique antiferromagnetic phase (counting only 
m > 0). In order to choose the correct phase in the two situations, we have plotted the 
grand canonical potential per site versus temperature for U / f  = 1.0 and U / t  = 2.0, see 
figures 3 and 4 respectively. For small U both the homogeneous and AF phases are locally 
stable as indicated by the curvature of Q ( T )  in figure 3. At the point c corresponding 
to the temperature T, the GCP for the AF phase coincides with that for the homogeneous 
phase. This is the temperature where the antiferromagnetic susceptibility diverges in the 
homogeneous phase. The AF solution always has the smaller GCP so we have a continuous 
phase transition at the temperature T, as expected. This is the Nkel temperature TN = Tc. 
For larger U we have the situation in figure 4. At the point b at T = Tb the two AF 
solutions coalesce, and at a (T = T,) the homogeneous solution crosses the lower of the 
two AF solutions. The curve given by the solid line extending leftwards from a and the 
dashed line extending rightwards from a is the minimum of our solutions and it is concave, 
therefore it is the proper GCP for the system. The branch (a, b, c) corresponds to unphysical 
(thermodynamically unstable) solutions. T, is the transition temperature one would obtain 
from (12) (temperature at which the order parameter vanishes), Tb is the largest temperature 
for which AF solutions are formally obtained, but the true thermodynamic phase transition 
temperature T, lies in between, T, < T, < Tb. Thus the system undergoes a first-order 
phase transition at T = T,. See the U / r  = 2.0 results in figure 2 for an example of this. 
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Figure 2 Solutions for the staggered ma~netizalion 
as a function of temperature for different values of U 
at half filling. The dotted line indicates the first-order 
transition for U l t  = 2.00. 
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35 

Figure 3. Grand canonical potential per silc versus 
temperarure T a1 U / t  = 1.0 for the AF (solid line) 
and homogeneous (dashed line) ph3ses as given by 
p S l =  @ - T r X  +Tr Inc .  

The phase transition can also be determined by looking at the h-m isotherms obtained 
from the Maxwell construction, which is well known from classical text-book treatments 
of first-order phase transitions, for instance for the van der Waals gas. One can then 
see that for U > U, ( T  = T,(U), h = 0, U) is a line of triple points and that 
(Tc(Uc) = T,(U,), h = 0, U,) is a tricritical point. Some examples are shown in figure 5 
for U = 2.01. A Maxwell equal-area construction on these gives one phase for T j t  = 0.15, 
three phases for T j t  = 0.14,0.13,0.12,0.11 and two phases for T j t  = 0.10,0.8. For some 
temperature close to T / t  = 0.14 there are two critical points at finite fields. The triple point 
is at h = 0 and T slightly less than 0.1 I f .  

In figure 6 we have plotted T, as a function of U and compared it to the Hartree 
approximation. When U -+ 0 we have T, - bexp(-a/U) in both cases, but in  the SOFT 
the constant b is smaller by a factor of about 0.3 in agreement with [14]. At larger values 
of U the SOPT result (in figure 6) has a slight negative curvature in contrast to the HA. 

This is in the regime where the SoPT actually predicts a first-order transition instead of a 
continuous one, so the plotted temperature T, is not the transition temperature 'T, > T, for 
these values of U .  

The equations for the Hubbard model within our approach are very similar to those for 
the spinless-fermion model (SFM) in  a self-consistent 1jd scheme [18]. The staggered 
magnetic moment in the SoPT for the Hubbard model translates into the charge order 
parameter of the SFM in the I/d approach, but no first-order transition is predicted for 
the SFM at large interactions. The major difference is that the Fock term is absent for the 
Hubbard model. This tends to increase the band width thus effectively pushing the system 
towards the weak-coupling regime. Therefore the SopT can (and does) give a different 
qualitative behaviour for stronger interaction in the HM compared to the SFM. 

It is well established that the AF phase transitions are continuous (i.e. of second order) 
at small and large U .  Therefore, a first-order transition as obtained here within the SoPT 
can exist only for some range of intermediate interaction. In the actual calculation a first- 
order transition will only be visible in the results for the order parameter or free energy in 
the ordered phase, but there are very few results on these quantities in the QMc literature, 
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Figure 4. Same as figure 3, but for Ut1 = 2.0. 
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m 

Figure 5. Solutions for the staggered external 
field h as a function of staggered magnetic moment 
m for U = 2.01 and temperatures T I 1  = 
0.08, 0.10. 0.11, 0.12, 0.13, 0.14, 0.15 (reading from 
above on the left-hand side of the figure). 

0.05 
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0 05 1 1.5 2 0.95 0.96 0.97 0.98 0.99 1 
un n 

F i y r e  6. Temperature T, at which the mtiferromag- 
netic susceptibility diverges in the homogeneous phase 
as a function of interaction at n = I .  Solid line: SOFT. 

dashed line: Hattree approximation. 

Figure 7. Phase diagrams in the T-n plane for various 
values of U. The lines denote the border between AF 

and homogeneous phases. The system is in the AF 

state close enough to half filling and for low enough 
temperature T. Solid lines: SOFT. dotted line: HA for 
U11 = 0.75. 

The calculation by Georges and Krauth [ I l l  for U / t  = 3.53 (in our scaling) does not 
support such a behaviour, however. Therefore, it cannot be excluded that the first-order 
transition is an artifact of the approximation, which is a weak-coupling approximation using 
the interaction as the small parameter. Then the occurrence of the first-order transition 
could be an indication that the approximation actually breaks down at this value of the 
interaction strength. We therefore focus attention on U < U, where it does not appear and 
our approximation is increasingly accurate. 
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As one moves away from half filling the N k l  temperature decreases, but there are 
intervals of n in which there is re-entrant behaviour in the temperature dependence, see figure 
7. If not masked by some other phase transition, the system may be in the homogeneous 
phase at low temperature, then enter the AF state upon increasing the temperature, and 
finally become homogeneous again at sufficiently high temperature. This feature is present 
for all values of U that we have calculated. It is also present in the Hartree approximation, 
but the values of T, and the ranges of densities in which AF is found are then much larger, 
Actually this type of re-entrant behaviour is present only in a very narrow range of filling 
fraction, because it is preceded by a phase separation at low temperature for most filling 
fractions. This is seen from figure 8 which shows the chemical potential versus filling 
fraction for temperatures T J t  = 0.01,0.015.0.02, For T l t  = 0.01 there is an interval 
where aplan < 0 indicating an instability of the phase. A Maxwell construction must be 
performed to determine the region of coexistence between the AF and homogeneous phases. 
Figure 9 shows the order parameter m versus filling fraction for various temperatures. The 
crossing of the curves for T / t  = 0.01 and T / t  = 0.015 shows that re-entrant behaviour is 
still present at least as close to the half-filled band as n c 0.992. In this case the solution 
for the AF phase does not disappear at low temperature (see also figure 7). 

0.1 

0.08 

o.0e 

E 
0.04 

0.02 

n .. . . 
0.97 0.98 0.99 1 0.97 0.98 0.99 1 

n n 

Figure 8. Chemical potential @ I t  versus filling fraction Figure 9. Staggered magnetization versus filling 
n for U = 1.01. fraction at vvious temperatures for U = I .Or, 

It is instructive to compare ow result to that of Uhrig and Vlaming for the spinless- 
fermion model in infinite dimensions [IS]. The re-entrant behaviour of the order parameter 
and the appearance of phase separation in their calculation is of the same kind as ours for the 
Hubbard model when U -+ 0. For the SFM a divergence of the density-density correlation 
function for incommensurate wave vectors was found. 

4. Concluding remarks 

We have investigated the Hubbard model in infinite dimensions with self-consistent second- 
order perturbation theory, which is a conserving approximation, and looked for the existence 
and stability of antiferromagnetic solutions. For half filling antiferromagnetism exists 
even for small interaction U ,  but the present approach yields a substantial correction for 
the critical (Nkel) temperature compared to the corresponding result obtained within the 
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Hamee approximation. For small U the antiferromagnetic phase transition is continuous, 
as expected, but when increasing U it becomes first order. This can be true only for 
intermediate coupling U and may be an artifact of the approximation, which becomes 
increasingly crude with increasing U. Away from half filling antiferromagnetism is 
suppressed and exists only in a narrow region of the electron density n around half 
filling; the region in the T-n plane in which antiferromagnetic solutions are obtained 
(for fixed interaction U) is strongly reduced within the present approach compared to the 
corresponding Hartree result. For small interactions there is re-entrant behaviour in the 
temperature dependence of the staggered magnetization in some ranges of densities, and 
there is also a region of phase separation for low temperature. 
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Note added in pmoJ After this work was completed. we 1-d about two other related works. Freericks and 
Jarrell [20] study the magnetic phase diagram of the HM using the QMC simulations [8] and find at a critical 
filling (away from half filling) a transition from a commensurate (AF) to an incommensurate phase. A recent 
weakcoupling study of the HM extended by nearest-neighbour interaction terms by van Dongen [21] shows that 
away from half filling and at zero tempentm. phase separation may be more stable than incommensurate phases, 
this is consistent with OUT finding of phase separation at low tempmure, 
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